
2025

How I Use LLMs at the 
OMSF

Presented by:
Ethan Holz - Research Software 
Engineer

OMSF Ecosystem Infrastructure



Some caveats

1. Test your code

2. AI doesn’t replace expertise

3. Always be careful about managing your data



Context is king

● LLMs are predictive machines, not thinking ones

● Provide as much context as possible
○ Documentation

○ Code

○ Papers*

● We have tools/methods to make getting context easy
○ Retrieval Augmented Generation (RAG)

○ Model Context Protocol (MCP)

○ Repomix

● llms.txt



My preferred workflow

1. Provide the context of the problem you have
○ MCP Server

○ Code snippet

○ An entire repo (Repomix)

2. Limit the scope of the solution

3. Provide a feedback loop
○ LLM-native editor

○ MCP



What I Use

● My editor - Zed

● My model of choice - Claude 3.5/4
○ For brainstorming, Claude Desktop

○ For code editing, GitHub Copilot Chat + Zed Agent

● MCP Tools
○ Linear MCP Server

○ Context7

○ GitHub MCP Server

● Included tools
○ File editing

○ Shell commands (helpful for git)



What hasn’t done gone well

● Blind trust of LLMs leading to project setback

● Unmaintainable code

● Over-engineering



What has worked well

● Helped for me to iterate quickly on an established web dev 

codebase
○ Lots of context (large codebase, well documented)

● Automated test generation for simple tests

● Enhanced feature development on an LLM-native codebase
○ llms.txt file for enabling easy documentation ingest

● Faster PR reviews
○ GitHub Copilot for a first pass review

● First pass documentation generation



Summary

● AI has helped, but it falls short without context

● Useful in well developed codebases

● Not a replacement for expertise


